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Abstract
In this report we review non-parametric Modal Regression using Kernel

Density Estimator. Instead of using conditional mean, Modal Regression
uses conditional mode to summarize the relationship between the response
and the explanatory variables. We describe the idea of Modal Regression and
include a brief discussion regarding the superiority of Multi-modal regres-
sion over the Uni-modal case. The consistency properties of the proposed
estimator and the idea of Confidence Sets have been reviewed. This report
also includes an application of Prediction Sets in case of Bandwidth selec-
tion. Certain generalizations and extensions are also discussed. The report is
primarily based on Chen et al. (2016).
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1 INTRODUCTION

1 Introduction

A usual approach for studying the relationship between a response variable, usually
denoted by Y , and its predictors, usually denoted by X , is through the conditional
mean of Y given X, i.e. E(Y |X). An alternative approach to this problem is to
replace the conditional mean with the conditional modes or local modes. Modal
regression searches the conditional modes (Sager and Thisted (1982), Lee (1989))
or local modes (Einbeck and Tutz (2006), Chen et al. (2016)) of the response Y
given the predictor X = x.
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Figure 1: In the top row, we show local regression estimate and its associated 95%
prediction bands alongside the modal regression and its 95% prediction bands. The
bottom row does the same for a different simulated data.
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2 MODAL REGRESSION

There are two broad scenarios where modal regression can perform better than the
conventional mean regression method in the sense that the former is better in cap-
turing X−Y relationship:
(1) When the conditional distribution of Y given X = x is skewed or heavy-tailed;
(2) When the conditional distribution of Y given X = x has multiple modes.
The conditional mean may fail to capture the inherent pattern in the data in such
cases and modal regression not only provides an improvement over trend estima-
tion but also provides narrower prediction bands as is evident in Figure 1.

Modal regression has been applied to many domains like transportation (Einbeck
and Tutz (2006)), astronomy (Rojas et al. (2005)) and in various problems such as
predicting Alzheimer’s disease (Wang et al. (2017)), analyzing healthcare expendi-
ture (Yao and Xiang (2016), Xiang and Yao (2022)), predicting temperature (Hyn-
dman et al. (1996)), analyzing electricity consumption (Chaouch et al. (2017)), and
studying the pattern of forest fire (Yao and Li (2014)).

The organization of the remainder of this report is as follows. In Section 2, we
formally introduce modal regression and discuss its two types: uni-modal and
multi-modal regression. In Section 3, we discuss about modal regression estima-
tion based on the mean-shift algorithm (Section 3.1). In Section 4, we study the
geometric properties of modal regression. In Section 5, we review the asymptotic
properties of modal regression estimators. In Section 6 and Section 7, we deal with
the construction of confidence sets and prediction sets. In Section 7.1, we discuss
bandwidth selection for the KDE based on minimizing the prediction sets. We end
the main part of the report in Section 8 with some extensions, generalizations and
related work on modal regression.

2 Modal Regression

Consider a response variable Y ∈ K ⊂ R and a predictor variable X ∈ D ⊂ Rd ,
where D is a compact set. There is literature on broadly two types of modal regres-
sion. One, focusing on conditional (global) modes, is called uni-modal regression
(Collomb et al. (1986), Lee (1989), Sager and Thisted (1982)). The other searches
for conditional local modes and is known as multi-modal regression (Chen et al.
(2016), Einbeck and Tutz (2006)).

More formally, let f (z) denote the probability density function (PDF) of a random
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2.1 Uni-modal vs. Multi-modal Regression 2 MODAL REGRESSION

variable Z. We define the operators:

UniMode= argmax
z

f (z)

and
MultiMode= {z : f ′(z) = 0, f ′′(z)< 0},

which return the global and local modes of the PDF of Z, respectively. Clearly, f
needs to be twice-differentiable. So, uni-modal regression searches for the function

m(x) = UniMode(Y |X = x) = argmax
y

p(y|x), (1)

while on the other hand, multi-modal regression searches for the function

M(x) = MultiMode(Y |X = x) = {y :
∂

∂y
p(y|x) = 0,

∂ 2

∂y2 p(y|x)< 0}. (2)

Note that M(x) may be a multi-valued function, i.e. it may take up multiple values
at any given point x.

Equations (1) and (2) may be further simplified noting that p(y|x) = p(x,y)
p(x) and

hence, given x, the global mode or local modes of p(y|x) and p(x,y) are equal. So,
provided p(x)> 0, we can rewrite equations (1) and (2) in the following form:

m(x) = argmax
y

p(x,y), M(x) = {y :
∂

∂y
p(x,y) = 0,

∂ 2

∂y2 p(x,y)< 0}. (3)

In other words, both the types of modal regressions may be directly defined through
the joint distribution.

2.1 Uni-modal vs. Multi-modal Regression

There are pros and cons to both uni-modal and multi-modal regression. Uni-modal
regression is an alternative to conventional regression methods for summarizing
the predictor-response relationship using a single function. Multi-modal regression
performs a similar task, but allows a multi-valued function. Although uni-modal
regression output is easier to interpret, multi-modal regression can identify hidden
structure in the predictor-response relationship in situations where the relationship
is complicated or involves several distinct components. Further, the prediction
intervals tend to be wider in uni-modal regression than in mutli-modal regression
(see Figure 2 for example). Throughout the remainder of this report, we focus on
multi-modal regression - its theory and applications.
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3 ESTIMATION
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Figure 2: Uni-modal regression and multi-modal regression along with their corre-
sponding 95% prediction sets on a simulated data with three components.

3 Estimation

We focus on the nonparametric estimation of the conditional mode set M(x) in (3)
using a plug-in estimate from the kernel density estimation (KDE) (Scott (2015),
Einbeck and Tutz (2006)):

M̂n(x) = {y :
∂

∂y
p̂n(x,y) = 0,

∂ 2

∂y2 p̂n(x,y)< 0}, (4)

where p̂n(x,y) is the joint KDE of X ,Y . Let (X1,Y1), ...,(Xn,Yn), be the observed
data. Then the KDE of the joint density of p(x,y) is

p̂n(x,y) =
1

nhd+1

n

∑
i=1

K
(
||x−Xi||

h

)
K
(

y−Yi

h

)
. (5)

Here, the kernel K is a smooth, symmetric function (like the Gaussian kernel1) and
h > 0 is called the bandwidth or smoothing parameter.

1K(x) = 1√
2π

e−
1
2 x2
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3.1 Mean-shift Algorithm 3 ESTIMATION

Throughout the report, we will assume the same bandwidth h and kernel K for
both the response as well the predictor variables. For conciseness of notations, we
will write the estimated modal set as

M̂n(x) = {y : p̂y,n(x,y) = 0, p̂yy,n(x,y)< 0}, (6)

where py(x,y) = ∂

∂y p(x,y), pyy(x,y) = ∂ 2

∂y2 p(x,y).

3.1 Mean-shift Algorithm

In general, estimating (6) is not trivial. However, for special kernels, Einbeck and
Tutz (2006) proposed a simple and efficient algorithm for computing local mode
estimates, based on the mean-shift algorithm (Cheng (1995), Comaniciu and Meer
(2002)).

We consider the following example to understand the mean-shift algorithm (Chen
(2018)). Consider an observation of i.i.d. 1-d random samples X1, . . . ,Xn ∼ p. We
take p̂ as a KDE with Gaussian kernel KG(x) =

√
2πe−x2/2. Gaussian kernel yields

a special feature which we make use of, that is, it has a nicely behaving derivative:

K′G(x) =−x · 1√
2π

e−
x2
2 =−x · KG(x)

The derivative of the KDE becomes:

p̂(x) =
d
dx

1
nh

n

∑
i=1

KG

(
Xi− x

h

)
=

1
nh3

n

∑
i=1

(Xi− x) ·KG

(
Xi− x

h

)
=

1
nh3

n

∑
i=1

Xi ·KG

(
Xi− x

h

)
− x ·

n

∑
i=1

KG

(
Xi− x

h

)
Multiplying both sides of the above equation by nh3 and dividing by KG

(Xi−x
h

)
we

get,

nh3

∑
n
i=1 KG

(Xi−x
h

) · p̂(x) = ∑
n
i=1 XiKG

(Xi−x
h

)
∑

n
i=1 KG

(Xi−x
h

) − x

If we rearrange the expression, we get a known structure:

x
current position

+
nh3

∑
n
i=1 KG

(Xi−x
h

) · p̂(x)
gradient ascent

=
∑

n
i=1 XiKG

(Xi−x
h

)
∑

n
i=1 KG

(Xi−x
h

)
next location

(7)
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3.1 Mean-shift Algorithm 3 ESTIMATION

Thus it takes the form of a gradient ascent algorithm. Given a point x, the value

of
∑

n
i=1 XiKG

(
Xi−x

h

)
∑

n
i=1 KG

(
Xi−x

h

) is a shifted location by the application of gradient ascent with an

amount of nh3

∑
n
i=1 KG

(
Xi−x

h

) · p̂(x). Thus the mean-shift algorithm performs an updation

of initial point x(t) as:

x(t) =
∑

n
i=1 XiKG

(
Xi−x(t)

h

)
∑

n
i=1 KG

(
Xi−x(t)

h

)
for t = 0,1,2, . . .. The above derivation suggests that this update moves points by
gradient-ascent (7). Thus the stationary point x(∞) will be one of the local modes
of the KDE. Although some initial points do not converge to local modes, these
points form a set with Lebesgue measure 0, so we can ignore them (Chen et al.
(2017)).

Making suitable changes for our setup, for simplicity, we consider the Gaussian
kernel here. We present the ‘partial’ mean-shift algorithm of Einbeck and Tutz
(2006) in Algorithm (1).

Algorithm 1 Partial mean-shift algorithm
Input: Data samples D = {(X1,Y1), ...,(Xn,Yn)}, bandwidth h. (The kernel K is
assumed to be Gaussian.)

1. Initialize mesh points M ⊂ Rd+1 (a common choice is M = D , the data
samples). 2. For each (x,y) ∈M , fix x, and update y using the following iterations
until convergence:

y←−
∑

n
i=1YiK

(
||x−Xi||

h

)
K
(

y−Yi
h

)
∑

n
i=1 K

(
||x−Xi||

h

)
K
(

y−Yi
h

) (8)

Output: The set M ∞, containing the points (x,y∞), where x is a predictor value as
fixed in M , and y∞ is the corresponding limit of the mean-shift iterations .

As shown above, it can be shown that the mean-shift update in (8) is a gradi-
ent ascent update on the function f (y) = pn(x,y) (for fixed x), with an implicit
choice of step size. Because this function f is generically non-concave, we are
not guaranteed that gradient ascent will actually attain a (global) maximum, but it
will converge to critical points under small enough step sizes (Arias-Castro et al.
(2016)).
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4 GEOMETRIC PROPERTIES

4 Geometric Properties

From (2), we recall that M(x) is a collection of points for each input x. The local
modes behave like a collection of surfaces (see Figure 3) called modal manifolds.
Going by the steps in Chen et al. (2016), we define a modal manifold collection as
the union of these sets over all inputs x,

S= {(x,y) : x ∈ D,y ∈M(x)} (9)

The dimension of the set S is d as obtained from the implicit function theorem.

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

5
0.

0
0.

5
1.

0

X

Y

S1

S2

Figure 3: S1 and S2 represent modal manifolds.

We assume that the modal manifold collection S can be factorized as:

S= S1∪·· ·∪SK , (10)

where each S j, j = 1,2, . . . ,K is a connected manifold defined as follows:

S j = {(x,m j(x)) : x ∈ A j} (11)

for some function m j(x) and open set A j. We also note that A1,A2, . . . ,AK form an
open cover for the support D of X . S j and m j(x) are called the jth modal manifold
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4 GEOMETRIC PROPERTIES

and the jth modal function, respectively. As a convention, m j(x) = φ if x ̸∈ A j.
This effectively allows us to write

M(x) = {m1(x), . . . ,mK(x)}, (12)

which means that for any given x, the values among m1(x), . . . ,mK(x) that are not
void give the local modes at that x.

The following lemma provides conditions under which each m j(x)is differentiable
and hence, in a sense, so is M(x).

Lemma 1 (Derivative of modal functions, Lemma 1, Chen et al. (2016)). Assume
that p is twice differentiable, and let S = {(x,y) : x ∈ D,y ∈ M(x)} be the modal
manifold collection. Assume that S factorizes according to (10), (11). Then, when
x ∈ A j ,

∇m j(x) =−
pyx(x,m j(x))
pyy(x,m j(x))

(13)

where pyx = ∇x
∂

∂y p(x,y) is the gradient over x of py(x,y).

Proof. We assume that x ∈ A j. Then, by definition, we have py(x,m j(x)) = 0.
Now, taking the gradient over x gives us

0 = ∇x py(x,m j(x)) = pyx(x, ,m j(x))+ pyy(x,m j(x))∇m j(x).

After rearranging the terms, we get the desired result.

Observe that (13) is defined as long as pyy(x,m j(x)) ̸= 0, which is trivially satisfied
by the definition of local modes (3). The interpretation of the above lemma is as
follows: when p is smooth, the modal manifolds are smooth as well.

We have established the smoothness of each of the modal manifolds. To charac-
terize the smoothness of M(x) itself, we need to define the concept of smoothness
over sets. For this purpose, we define the Hausdorff Distance.

Definition 1 (Hausdroff Distance). Let us consider a metric space (M,d) and sup-
pose X and Y be two non-empty subsets of the metric space. Then the Hausdroff
distance between X and Y is define by,

dH(X ,Y ) = max{sup
x∈X

d(x,Y ),sup
y∈Y

d(X ,y)}

where d(a,B) is the distance from a point a to the set B, d(a,B) = infb∈B d(a,b).

10



5 CONSISTENCY

An alternative and compact form of Hausdorff distance between two sets A and
B is given by:

Haus(A,B) = inf{r : A⊆ B⊕ r,B⊆ A⊕ r},

where A⊕ r = {x : d(x,A)≤ r} with d(x,A) = infy∈A ||x− y||. The distance can be
viewed as a generalization of ℓ∞ distance for sets. The following theorem estab-
lishes the smoothness of the modal manifold collection.

Theorem 1 (Theorem 2, Chen et al. (2016)). Assume the conditions of Lemma 1.
Assume furthermore all partial derivatives of p are bounded by C, and there exists
λ2 > 0 such that pyy(x,y)<−λ2 for all y ∈M(x) and x ∈ D. Then

lim
|ε|−→0

Haus(M(x),M(x+ ε))

|ε|
≤ max

j=1,...,K
||m′j(x)|| ≤

C
λ2

< ∞. (14)

The proof of the above theorem follows directly from Lemma 1 and the definition
of Hausdorff distance. Theorem 1 can be interpreted as a statement about Lipschitz
continuity with respect to Hausdorff distance.

We now define the sample versions of the above defined population quantities.
For the estimate M̂n(x), we define

Ŝn = {(x,y) : y ∈ M̂n(x),x ∈ R}= Ŝ1∪·· ·∪ ŜK̂ , (15)

where each Ŝ j is a connected manifold, and K̂ is the total number. In a similar
fashion, we define m̂ j(x) for j = 1, . . . , K̂ and can, thus, write

M̂n(x) = {m̂1(x), . . . , m̂K̂(x)}. (16)

In practice, it is not trivial finding the total number of manifolds K̂ and determining
the manifold memberships. In principle, although the sample manifolds Ŝ1, . . . , ŜK̂
are well defined in terms of the sample estimate M̂n(x), even with a perfectly con-
vergent mean-shift algorithm, mean-shift iterations at every input x in the domain
D needs to be run to determine these manifold components, which is clearly not an
implementable strategy. Thus, from the output of the mean-shift algorithm over a
finite mesh, some type of simple post-processing technique is usually employed to
determine connectivity of the outputs and hence the sample manifolds. For further
discussion, the interested reader is directed to Section 7 of Chen et al. (2016).

5 Consistency

In this section we will focus on the convergence of the estimated modal regression
set M̂n(x) to the modal set Mn(x). Now let us define the followings:

11



5 CONSISTENCY

BCk(C): Collection of k times continuously differentiable functions with all the
partial derivatives absolutely bounded by C.

Given K, a kernel K is the collection of functions defined by,

K =

{
v 7→ K(α)

(
z− v

h

)
: z ∈ R,h > 0,α = 0,1,2

}
where K(α) is the α th order derivative of K.
We assume the following:

Assumption A1. The joint density p ∈ BC4(Cp), for some Cp > 0.

Assumption A2. The collection of modal manifolds can S can be factorized into
S= S1∪S2∪ ...∪SK , where S j is a connected curve that follows a parametrization
S j = {(x,m j(x)) : x∈ A j} for some m j(x) and A1,A2, ...,AK form an open cover for
the support D of X.

Assumption A3. There exists λ2 > 0 such that for any (x,y)∈D×K with py(x,y)=
0, |pyy(x,y) |> λ2.

Assumption K1. The Kernel function K ∈ BC2(CK) and satisfies,∫
R
(K(α))2(z)dz < ∞∫

R
z2(K(α))(z)dz < ∞

for α = 0,1,2

Assumption K2. The collection K is a VC-type class, i.e. there exists A,v > 0
such that for 0 < ε < 1

supQ N(K ,L2(Q),CKε )≤ Av

εv

where N(T,d,ε) is the ε−covering number for the semimetric space (T,d) and Q
is any probability measure.

Assumption (A1) is a smoothness condition. Fourth order derivative is required
to ge the bounds of the bias of second derivatives. Assumption (A2) states that it
is possible to represent the collection of all local modes as a finite collection of
manifolds. (A3) ensures the sharpness of all the critical points and it also excludes
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5 CONSISTENCY

the cases that the modal manifolds bifurcate or merge. Assumption (K1) makes
sure that the Kernel Density Estimator has the usual rates for its bias and variance.
(K2) is assumed for the uniform bound of the kernel Density estimator.
At first we will discuss the point wise convergence of M̂n(x). For this purpose the
concept of Hausdroff distance will be used.

Let us denote the Hausdroff distance between M̂n(x) and Mn(x) as,

∆n(x) = Haus{M̂n(x),Mn(x)}

Also, we define the following quantities:

∥ p̂n− p∥0
∞ = supx,y ∥ p̂(x,y)− p(x,y)∥

∥ p̂n− p∥1
∞ = supx,y ∥ p̂y(x,y)− py(x,y)∥

∥ p̂n− p∥2
∞ = supx,y ∥ p̂yy(x,y)− pyy(x,y)∥

∥ p̂n− p∥∗∞,2 = max{∥p̂n− p∥0
∞,∥ p̂n− p∥1

∞,∥p̂n− p∥2
∞}

Theorem 2 (Point wise Error Rate). Assuming (A1-3) and (K1-2) we define the
stochastic process An(x) as,

An(x) =


1

∆n(x)
|∆n(x)−maxz∈M(x){ |p−1

yy (x,z) | |p̂y,n(x,z) |} | if ∆n(x)> 0

0 if ∆n(x) = 0

Then for sufficiently small ∥p̂n− p∥∗
∞,2 we will have,

supx∈D(An(x)) = Op(∥ p̂n− p∥∗∞,2)

Moreover, at any fixed x ∈ D, when nhd+5

logn → ∞ and h→ 0 we have

∆n(x) = O(h2)+Op

(√
1

nhd+3

)
Proof. Let x ∈ D be a fixed point. Let y j ∈ M(x) be a local mode and ŷ j be the
estimator of y j.

Also, by assumption (A3) it can be shown that for sufficiently small ∥p̂n−
p∥∗

∞,2, for every x ∈ D it is possible to have a unique closest estimator ŷ j corre-
sponding to y j. Then we have,

py(x,y j) = 0

p̂y,n(x, ŷ j) = 0

13



5 CONSISTENCY

Using the above facts and Taylor’s theorem we have,

p̂y,n(x,y j) = p̂y,n(x,y j)− p̂y,n(x, ŷ j)

= (y j− ŷ j)p̂yy,n(x,y∗j)

where y∗j is a point between y j and ŷ j. Now dividing both sides by p̂yy,n(x,y∗j) and
using the fact that,

|p̂yy,n(x,y∗j)
−1− pyy(x,y j)

−1 |= Op(∥ p̂n− p∥∗∞,2) (17)

we get,

ŷ j− y j =−p̂yy,n(x,y∗j)
−1 p̂y,n(x,y j)

=−pyy(x,y∗j)
−1 p̂y,n(x,y j)+Op(∥ p̂n− p∥∗∞,2 · p̂y,n(x,y j)) (18)

Note that, (17) is valid as by (A3) pyy and p̂yy both are bounded away from 0 when
x and y are sufficiently close to S (the modal manifold collection). Hence, by (A1)
and (K1) the inverses are also bounded above.
From (18) we can write,

|ŷ j− y j |− |pyy(x,y∗j)
−1 p̂y,n(x,y j) |= Op(∥ p̂n− p∥∗∞,2. |p̂y,n(x,y j) |) (19)

Now, ∆n(x) = max j |ŷ j− y j |. So, taking max over all the local modes in (19) we
get,

∆n(x)−max j |pyy(x,y∗j)
−1 p̂y,n(x,y j) |= Op(∥p̂n− p∥∗∞,2.max j |p̂y,n(x,y j) |)

Thus,

max j{ |p̂y,n(x,y j) |}−1 |∆n(x)−max j |pyy(x,y∗j)
−1 p̂y,n(x,y j) | |= Op(∥p̂n− p∥∗∞,2)

(20)

So, ∆n(x) can be approximated by max j |pyy(x,y∗j)
−1 p̂y,n(x,y j) |.

Thus equation (20) implies that,

1
∆n(x)

|∆n(x)−max j |pyy(x,y∗j)
−1 p̂y,n(x,y j) | |= Op(∥p̂n− p∥∗∞,2) (21)
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5 CONSISTENCY

When ∆n(x)> 0, LHS of (21) = An(x). Again, as the RHS of (21) does not depend
upon x, taking sup to both the sides we get,

supx An(x) = Op(∥p̂n− p∥∗∞,2)

Now,

|p̂y,n(x,y j) |= |p̂y,n(x,y j)− py(x,y j) |
≤ |p̂y,n(x,y j)−E(p̂y,n(x,y j)) |+ |E(p̂y,n(x,y j))− py(x,y j) |

= Op

(√
1

nhd+3

)
+O(h2) (22)

Here (22) comes from the usual bias-variance trade-off of Kernel Density Estima-
tor.
From (A1-3) it can be obtained that |pyy(x,y j)

−1 | is bounded from above and be-
low. Hence, max j |p̂y,n(x,y j)| has the same rate as that of max j |pyy(x,y∗j)

−1 p̂y,n(x,y j)|
i.e. ∆n(x). So, we have,

∆n(x) = Op

(√
1

nhd+3

)
+O(h2)

This shows that if the curvature of the joint density function along y is bounded
away from 0, then the error can be approximated by the error of p̂y,n(x,z) after
scaling.

Now we state the theorem that shows the Uniform convergence of M̂n and we
define the uniform error rate as,

∆n = supx∈D ∆n(x)

Theorem 3 (Uniform Error rate, Theorem 4, Chen et al. (2016)). Assume (A1-3)
and (K1-2), then as nhd+5

logn → ∞ and h→ 0 we have,

∆n = Op

(√
logn
nhd+3

)
+O(h2)

Next we will consider the Mean Integrated Squared Error (MISE), which is a
non-random quantity and is defined as,

MISE(M̂n) = E
(∫

x∈D
∆

2
n(x)dx

)
15



5 CONSISTENCY

Theorem 4 (MISE rate,Theorem 5, Chen et al. (2016)). Assuming (A1-3) and (K1-
2), as nhd+5

logn → ∞ and h→ 0,

MISE(M̂n) = O(h4)+O
(

1
nhd+3

)
Proof. From Theorem 2 we can show that,

∆n(x) = O(h2)+Op

(√
1

nhd+3

)
(23)

Taking square and and expectation of equation (23) we get,

E(∆2
n(x)) = O(h2)+Op

(√
1

nhd+3

)
= Bias2(x)+Variance(x)

Following the arguments from Chacón et al. (2011);Chacón and Duong (2013) it
can be shown that the integrated bias and variance yields the same rate of conver-
gence.

Now, if we try to estimate the regression modes of smooth joint density p̃(x,y)=
E(p̂n(x,y)), then it is possible to have a faster convergence rates. Let us denote the
smoothed regression modes at x ∈ D as M̃(x) = E(M̂n(x)). Let us also define the
followings:

∆̃n(x) = Haus(M̂n(x),M̃(x))

∆̃n = supx∈D ∆̃n(x)

˜MISE(M̂n) = E
(∫

x∈D
∆̃

2
n(x)dx

)
Corollary 4.1 (Error rates for smoothed conditional mode). Assume (A1-3) and
(K1-2). Then as nhd+5

logn → ∞ and h→ 0,
√

nhd+3 supx∈D |∆̃n−maxz∈M̃(x){ p̃−1
yy (x,z)p̂y,n(x,z)} |= Op(εn,2)

∆̃n(x) = Op

(√
1

nhd+3

)

∆̃n = Op

(√
logn

nhd+3

)

˜MISE(M̂n) = O

(√
1

nhd+3

)

16



6 CONFIDENCE SETS

where,

εn,2 = supx,y |p̂yy,n(x,y)− p̃yy(x,y) | = supx,y |p̂yy,n(x,y)−E(p̂yy,n(x,y)) |

6 Confidence Sets

Now that we have established the consistency of the of nonparametric modal re-
gression estimator, we next focus on constructing confidence sets which can be
used to obtain a band of values from around the points of the modal manifold
which can contain the true population local modes up to a desired level of signifi-
cance.

We first introduce the concept of confidence sets under a parametric setup. We
shall thereafter extend the concept under our current nonparametric setup and dis-
cuss techniques to construct them.

Definition 2 (Confidence Sets). Let the data be distributed according to a random
variable X, which depends on a parameter θ taken from a parameter space Θ. A
1−α confidence set, denoted by C (X), is a subset of the parameter space Θ that
only depends on X such that:

inf
θ∈Θ

Pθ (θ ∈ C (X))≥ 1−α

We now extend the concept under our setup. An ideal setting would allow us to
define a confidence set at x by

Ĉ0
n(x) = M̂n(x)⊕δn,1−α(x)

where

P(∆n(x)> δn,1−α(x)) = α

By the above construction, we have, P(M(x) ∈ Ĉ0
n(x)) = 1−α . The distribution of

∆n(x) is however unknown and hence we use bootstrap (Efron (1979)) in order to
estimate δn,1−α .

Given observed samples (X1,Y1), . . . ,(Xn,Yn), the bootstrap sample is denoted as
(X∗1 ,Y

∗
1 ), . . . ,(X

∗
1 ,Y

∗
1 ). Let M̂∗n(x) be the estimated regression modes based on boot-

strap sample. The pointwise error at a given point x based on the bootstrap sample
is given by

∆̂
∗
n(x) = Haus(M̂∗n(x),M̂n(x))

17



6 CONFIDENCE SETS

Upon repeating the bootstrap sampling B times to get ∆̂∗1,n(x), . . . , ∆̂
∗
B,n(x). Now we

define δ̂n,1−α(x) by

1
B

B

∑
k=1

I
(

∆̂k,n(x)> δ̂n,1−α(x)
)
≈ α

The confidence set thus estimated for M(x) is given by

Ĉn(x) = M̂n(x)⊕ δ̂n,1−α(x)

This confidence set is defined for a particular value of x from its domain and thus
it is a pointwise confidence set, at x ∈ D.

To build a uniform convergence set, we define ∆n = supx∈D ∆n(x). Further, we
define δn,1−α by

P
(

M(x)⊆ M̂n(x)⊕δn,1−α , ∀x ∈ D
)
= 1−α

We proceed in similar lines with bootstrap sampling to form an estimate of δn,1−α

as δ̂n,1−α , based on quantiles of the bootstrapped uniform error metric

∆̂
∗
n = sup

x∈D
Haus

(
M̂∗n(x),M̂n(x)

)

Figure 4: An example with 90% pointwise (left) and uniform (right) confidence
sets. The plot has been taken from Chen et al. (2016).
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6 CONFIDENCE SETS

See Figure 4 for an example with ordinary bootstrap.

The estimated uniform confidence set is

Ĉn =
{
(x,y) : x ∈ D,y ∈ M̂n(x)⊕ δ̂n,1−α

}
Our focus in this undertaking is on the theoretic asymptotic coverage of uniform
confidence sets built with previously mentioned ordinary bootstrap. To avoid po-
tential issues of the bias, we consider the coverage of smoothed regression mode
set M̃(x). To proceed with further calculations, we will make use of tools devel-
oped in Chernozhukov et al. (2014a); Chen et al. (2015).

Consider a function space F defined as

F =

{
(u,v) 7→ fx,y(u,v) : fx,y(u,v) = p̃−1

yy (x,y) ×

K
(
||x−u||

h

)
K(1)

(
y− v

h

)
,x ∈ D,y ∈ M̃(x)

}
(24)

Let B be a Gaussian process defined on F such that

Cov(B( f1),B( f2)) = E( f1(Xi,Yi) · f2(Xi,Yi))−E( f1(Xi,Yi)) ·E( f2(Xi,Yi)) (25)

for all f1, f2 ∈F .

Theorem 5 (Limiting Distribution, Theorem 7, Chen et al. (2016)). Assume (A1-
3) and (K1-2). Define a random variable B = (hd+3)−1/2 sup f∈F |B( f )|. Then as
nhd+5

logn → ∞,h→ 0,

sup
t≥0

∣∣∣∣P(√nhd+3∆̃n < t
)
−P(B < t)

∣∣∣∣= O

((
log4 n
nhd+3

)1/8)
Proof. We prove this theorem in similar lines as in Chen et al. (2015).

We consider F to be the functional space defined in (24). As earlier, we define
Gn as an empirical process on F of the following form:

Gn( f ) =
1√
n

(
n

∑
i=1

( f (Xi,Yi)−E( fk(Xi,Yi))

)

19



6 CONFIDENCE SETS

We denote Gn = 1√
hd+3 sup f∈F |Gn( f )| and B = 1√

hd+3 sup f∈F |B( f )|. Our proof
will include three steps. In the first step we focus on establishing a coupling be-
tween the Hausdorff distance (

√
nhd+3∆n) and the supremum of the empirical pro-

cess Gn. The second step shows that the distribution of the maxima of the empirical
process can be approximated by the maxima of a Gaussian process, i.e., a coupling
between Gn and B. The last step uses anti-concentration (Chernozhukov et al.
(2014a)) to bound the distributions between

√
nhd+3∆n and B, i.e. to convert this

coupling into the desired Berry-Essen bound.

Before proceeding with the proof, we define the following,

Definition 3 (Reach for a set (Federer (1959))). The reach for a set A, denoted by
reach(A), is the largest real number r such that each x ∈ {y : d(y,A) ≤ r} has a
unique projection onto A. The reach measures the smoothness of a set.

Step 1 Our goal is to show

P
(
|
√

nhd+3∆n−Gn|> ε

)
≤ D1e−D2nhd+5ε2

(26)

for some constants D1, D2.

From Corollary 4.1

|
√

nhd+3∆n−Gn|= O(εn,2) = O
(

sup
x,y
|p̂yy,n(x,y)−E(p̂yy,n(x,y))|

)
(27)

Thus from (27), there exists a constant D0 > 0 such that

|
√

nhd+3∆n−Gn| ≤ D0 sup
x,y
|p̂yy,n(x,y)−E(p̂yy,n(x,y))|

By Talagrand’s inequality (Thereom A.4 in Chernozhukov et al. (2014a); Talagrand
(1996)),

P
(
|
√

nhd+3∆n−Gn|> ε

)
≤ P

(
sup
x,y
|p̂yy,n(x,y)−E(p̂yy,n(x,y))|> ε/D0

)
(28)

≤ D1eD2nhd+5ε2

For some constraints D1, D2 > 0. This gives the desired result.
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6 CONFIDENCE SETS

Further, recalling asymptotic Hausdorff distance, distH(A,B) = supx∈B d(x,A),
then,

|
√

nhd+3distH(M̂n,Mn)−G|= O
(
||p̂n− pn||∗∞,4

)
(29)

This shows that the quasi-Hausdorff distance can be approximated an empirical
process over the functional space F .

When ||p̂n− pn||∗∞,5 is sufficiently small, the reach of M̂n is close to the reach of
Mn, by claim 7 of Lemma 2 of Chen et al. (2015), and the Hausdorff distance is
much smaller than the reach.
To proced, we require the following lemma.

Lemma 2. Let R1, R2 be two closed, nonself-intersecting curves with positive
reach. If

Haus(R1,R2)< (2−
√

2)min{reach(R1),reach(R2)}

then,

distH(R2,R1) = distH(R1,R2) = Haus(R1,R2) (30)

The proof can be found in Chen et al. (2015).

Following Lemma 2, the quasi-Hausdorff distance is the same as the Hausdorff
distance, so that

|
√

nhd+3Haus(M̂n,Mn)−G|= O(||p̂n− pn||∗∞,4) (31)

Equation (31) is the coupling between Hausdorff distance and the supremum of an
empirical process, being the main result of step 1 (proved in another approach in
(28)). It is to be noted that a sufficient condition for ||p̂n− pn||∗∞,4 being small is

that nhd+5

logn → ∞,h→ 0. This is the bandwidth condition that we require.

Step 2 We will show

P

(
|Gn−B|> A1

b0 log2/3 n

γ1/3 (nhd+3)
1/6

)
≤ A2γ (32)

for some constants A1,A2.
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6 CONFIDENCE SETS

We first recall a useful Theorem in Chernozhukov et al. (2014c):

Theorem 6 (Theorem 3.1 in Chernozhukov et al. (2014a)). Let G be a collection
of functions that is a VC-type class (see condition (K2)) with a constant envelope
function b. Let σ2 be a constant such that supg∈G E

[
g(Xi)

2
]
≤ σ2 ≤ b2. Let B be

a centered, tight Gaussian process defined on G with covariance function

Cov(B(g1) ,B(g2)) = E [g1 (Xi)g2 (Xi)]−E [g1 (Xi)]E [g2 (Xi)] (33)

where g1,g2 ∈ G . Then for any γ ∈ (0,1) as n is sufficiently large, there exist a

random variable B d
= sup f∈G |B(g)| such that

P

(∣∣∣∣∣sup
f∈G
|Gn(g)|−B

∣∣∣∣∣> A1
b1/3σ2/3 log2/3 n

γ1/3n1/6

)
≤ A2γ (34)

where A1,A2 are two universal constants. Note that A d
= B for random variables

A,B means that A and B has the same distribution

To apply Theorem 6, we need to verify conditions. By assumption (K2) and (A3),
F is a VC-type class with constant envelope b0 =C2

K λ̃2 < ∞. Note that 1/λ̃2 is the
bound on the inverse second derivative of p̃yy(x,y) as y is closed to a local mode.
Now we find σ2. By definition,

sup
f∈F

E
[

f (Xi)
2
]
≤ hd+3b2

0 (35)

Thus, we can pick σ2 = hd+3((b2
0 ≤ b2

0 if h≤ 1. Hence, applying Theorem 6 gives

P

(∣∣∣∣∣ sup
f∈F

∣∣∣∣∣Gn( f )
∣∣−B′

∣∣> A1
b0h2/3h2 log2/3 n

γ1/3n1/6

)
≤ A2γ (36)

for some constants A1,A2 and γ < 1 and B′ d
= sup f∈F |B( f )|, where B is a Gaus-

sian process defined on F .

Now multiply
√

h−d−3 in the both side of the above expression and use the def-
inition of Gn and the fact that 1√

hd+3 B′ = B,

P

(
|Gn−B|> A1

b0 log2/3 n

γ1/3 (nhd+3)
1/6

)
≤ A2γ (37)

which is the desired result (32).
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Step 3 We first show the coupling between
√

nhd+3∆n and B. We pick ε =
(
nhd+5

)−1/4

in (26) so that

P
(∣∣∣√nhd+3∆n−Gn

∣∣∣> (nhd+5
)−1/4

)
≤ D1e−D2

√
nhd+5

(38)

As n is sufficiently large, and by triangular inequality along with (32),

P

(∣∣∣√nhd+3∆n−B
∣∣∣> A3

log2/3 n

γ1/3 (nhd+3)
1/6

)
≤ A4γ, (39)

for some constants A3,A4 > 0. Note that we absorb the rate
(
nhd+5

)−1/4 in (38)

into A3
log2/3 n

γ1/3(nhd+3)
1/6 . This is valid since

(
nhd+5

)−1/4 converges faster. Also, we ab-

sorb D1e−D2
√

nhd+5 into A4γ . We allow γ → 0 as long as γ converges at rate slower
than

(
nhd+5

)−1/4.

Now applying the anti-concentration inequality (version of Lemma 16 in Chen
et al. (2015)); see also Corollary 2.1 in Chernozhukov et al. (2014a), Chernozhukov
et al. (2014c), Chernozhukov et al. (2014b)), we conclude

sup
t

∣∣∣P(√nhd+3∆n < t
)
−P(B < t)

∣∣∣≤ A5

(
A3

log2/3 n

γ1/3 (nhd+3)
1/6 +A4γ

)
(40)

for some A5 > 0. Now by taking γ =
(

logn
nhd+1

)1/8
, we obtain the desired result.

The Theorem 5 shows that the smoothed uniform error ∆̃n is distributed asymptot-
ically (coupled) as the supremum of a Gaussian Process. In other words, we can
mathematically define the relationship as follow:

|
√

nhd+3∆̃n−B|= OP

((
logn
nhd+1

)1/8
)

We are next interested in the limiting behaviour of the bootstrap estimate. Let
Dn = {(X1,Y1), . . . ,(Xn,Yn)} be the observed data, the bootstrap estimate is given
by

∆̂
∗
n = sup

x∈Dn

Haus(M̂∗n(x),M̂n(x))
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where M̂∗n(x) is tge bootstrap regression mode set at x.

Theorem 7 (Bootstrap Consistency, Theorem 8, Chen et al. (2016)). Assume con-
ditions (A1-3) and (K1-2). Also assume that nh6/ logn → ∞, h → 0. Define
B = (hd+3)−1/2 sup f∈F |B( f )|. There exists χn such that P(χn) ≥ 1−O

(1
n

)
, and

for all Dn ∈ χn,

sup
t≥0

∣∣∣∣P(√nhd+3∆̂
∗
n < t

∣∣∣ Dn

)
−P(B < t)

∣∣∣∣= O

((
log4 n
nhd+3

)1/8)

Proof. The proof of this theorem runs along the same line of the previous Theorem
5 (based on Chen et al. (2015)). We state the basic ideas and omit the details.

Chen et al. (2015) proves the theorem in three steps. First it is shown that the
Hausdorff distance Haus(M̂∗n ,M̂n) conditioned on the observed data Dn can be ap-
proximated by an empirical process. Second, using result of Theorem 5, we bound
the difference between the distributions of Haus(M̂∗n ,M̂n) and a Gaussian process
defined on M̂n. This uses the second an third steps of Theorem 5. The last step
shows that the Gaussian process defined on M̂n is asymptotically the same being
defined on Mn).

We note that the functional space defined in (24) depends on the probability mea-
sure P and smoothing parameter h. Since y is defined on the smoothed local mode
M̃(n) and it requires second derivatives of smooth density p̃(x,y). Both M̃(x) and
p̃(x,y) are completely defined by P and h. For the bootstrap estimate, Theorem 5
implies that ∆̂∗n can be approximated by the marginal of a certain Gaussian process,

sup
f∈F (Pn,h)

|B( f )| (41)

Note now the function space depends on Pn and h. This is because for the bootstrap
case, we are conditioned on the data (D i.e. empirical measure Pn) and sampling
from Pn. The role of P is completely replaced by Pn. For the functional space,
the index y takes values at the ‘estimated’ local modes M̂n(x) and p̃yy(x,y) will be
replaced by the second derivative of KDE p̂n(x,y). Both quantities now are deter-
mined by the empirical measure Pn and the smoothing parameter h.

The maximal of Gaussian processes defined on the two functional space F (P,h)
and F (Pn,h) will be asymptotically the same by Lemma 17, 19 and 20 in Chen
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7 PREDICTION SETS

et al. (2015). Putting altogether, the result follows from the approximation

∆̂
∗
n ≈ sup

f∈F (Pn,h)
|B( f )| ≈ sup

f∈F (P,h)
|B( f )| ≈ ∆n. (42)

Theorem 7 shows that the limiting distribution for the bootstrap estimate ∆̂∗n is the
same as the limiting distribution of ∆̃n (recall Theorem 5) with high probability.
(Note that ∆̂∗n, given the data samples Dn, is a random quantity.) Using Theorems
5 and 7, we conclude the following.

Corollary 7.1 (Uniform confidence sets, Corollary 9, Chen et al. (2016)).). Assume
(A1-3) and (K1-2). Then as nh6

logn → ∞ and h→ 0,

P
(

M̃(x)⊆ M̂n(x)⊕ δ̂n,1−α , ∀x ∈ D
)
= 1−α +O

((
log4n
nhd+3

)1/8
)

7 Prediction Sets

In this section, we discuss the application of modal regression in constructing pre-
diction sets (Chen et al. (2016)). We define the following

ε1−α(x) = inf{ε ≥ 0 : P(d(Y,M(X))> ε | X = x)≤ α}
ε1−α = inf{ε ≥ 0 : P(d(Y,M(X))> ε)≤ α}

For a point x and a set A, recall that d(x,A) = infy∈A |x− y| . Then

P1−α(x) = M(x)⊕ ε1−α(x)⊆ R
P1−α = {(x,y) : x ∈ D, y ∈M(x)⊕ ε1−α} ⊆ D×R

are pointwise and uniform prediction sets, respectively, at the population level.
This is because

P(Y ∈P1−α(x) | X = x)≥ 1−α

P(Y ∈P1−α)≥ 1−α

Correspondingly, at the sample level, we use a KDE of the conditional density
p̂n(y | x) = p̂n(x,y)/ p̂n(x), and estimate ε1−α(x) via

ε̂1−α(x) = inf
{

ε ≥ 0 :
∫

M̂n(x)⊕ε

p̂n(y | x)dy≥ 1−α

}
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An estimated pointwise prediction set is then

P̂1−α(x) = M̂n(x)⊕ ε̂1−α(x)

This has the proper pointwise coverage with respect to samples drawn according
to p̂n(y | x), so in an asymptotic regime in which p̂n(y | x)→ pn(y | x), it will have
the correct coverage with respect to the population distribution, as well. Similarly,
we can define

ε̂1−α = Quantile
({

d
(

Yi,M̂n (Xi)
)

: i = 1, . . . ,n
}
,1−α

)
, (43)

the (1−α) quantile of d
(

Yi,M̂n (Xi)
)
, i = 1, . . . ,n, and then the estimated uniform

prediction set is

P̂1−α =
{
(x,y) : x ∈ D,y ∈ M̂n(x)⊕ ε̂1−α

}
(44)

The estimated uniform prediction set has proper coverage with respect to the em-
pirical distribution, and so certain conditions, it will have valid limiting population
coverage.

7.1 Bandwidth Selection

In this sub-section, we will discuss the application of uniform prediction sets in
selecting the smoothing parameter h of the underlying KDE. Based on definition
(44), the volume (Lebesgue measure) of the estimated uniform prediction set is
defined as

Vol(P̂1−α,h) = ε̂1−α,h

∫
x∈D

K̂h(x)dx,

where K̂h(x) is the number of estimated local modes at X = x, and ε̂1−α,h is as
defined in (43). Roughly speaking, a small h corresponds to a small ε̂1−α,h, but a
large K̂h(x) and a large h corresponds to a large ε̂1−α,h, but a small K̂h(x). So, we
select an optimal h, h∗ say, as

h∗ = argmin
h≥0

Vol(P̂1−α,h).

Figure 5 illustrates the above rule with α = 0.05. There is a evidently a trade-of in
the size of the prediction set versus h in the plot. We also obtain the optimal h for
the local regression method. The figure helps in visualizing the strength of modal
regression, which not being constrained to modeling conditional mean structure,
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8 DISCUSSION

can produce smaller prediction sets than the usual regression methods when the
conditional mean fails to capture the main structure in the data.
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Figure 5: Bandwidth selection based on size of prediction sets.

It can be shown that, at the population level, under certain assumptions, the pre-
diction sets from modal regression ca be smaller than those based the underlying
regression function µ(x) =E(Y |X = x). For a comprehensive review, we direct the
reader to Section 6.2 of Chen et al. (2016).

8 Discussion

In this report we reviewed multi-modal regression along with some relevant top-
ics like asymptotic theory, confidence and prediction sets and bandwidth selection.
Here we outline some other relevant topics that were out of the scope of this report.

Two concepts related to modal regression are mixture regression and density ridges.
A comprehensive analysis is done in Chen et al. (2016), which also describes how
clustering can be used to conduct modal clustering (Section 7.1).

Chen (2018) reviews uni-modal regression and provides references to certain ex-
tensions and generalizations to measurement error case and censored response vari-
ables. Similar extensions and generalizations in the multi-modal regression are yet
to be explored more vigorously.
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We have reviewed confidence band construction based on a bootstrap approach.
However, because this confidence band does not correct bias in KDE, it requires
an undersmoothing assumption. Recently, Calonico et al. (2018) proposed a de-
biased approach that constructs a bootstrap nonparameteric confidence set without
undersmoothing. The application of this approach to modal regression is another
possible future direction (Chen (2018)).

A classical problem in nonparameteric statistics is bump hunting (Burman and
Polonik (2009), Hall et al. (2004)), which detects the number of significant lo-
cal modes. An interesting study of the bump hunting problem may be in the modal
regression setting.

9 Supplementary Material

The interested reader is directed to https://github.com/ArkaB-DS/NPmodalReg which
contains all the figures present here in the directory images and the corresponding
codes to generate them in the R directory.
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